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ABSTRACT 

It is shown that if A is a countable, admissible set and t~ r -~,l, then under 
certain conditions, ~ has a model in A. In general, however, if Tis a consistent 
theory of.~ A, E-definable on A,then there is an admissible set B ~ ,4, with 
the same ordinals as ,4, containing a model of T. 

A downward Lowenheim-Skolem theorem is a result of the following sort: 

Every semantically consistent theory of a certain type having a prescribed degree 

of simplicity has a model of some corresponding degree of simplicity. In the 

original downward Lowenheim-Skolem theory, the notion of simplicity involved 

was simply cardinality. In this paper, we continue the program initiated in [8] of 

presenting refinements of the original downward Lowenheim-Skolem theorem in 

which the notion of simplicity employed is based on the concept of an admissible 

set. 

Our notion of a downward Lowenheim-Skolem theorem is very much Like the 

familiar notion of basis theorem in recursion theory. In fact, there is a certain 

parallel between some of the results presented below and basis theorems. In 

Section 1, the path from basis theorem to downward Lowenheim-Skolem 

theorem involves more than just a translation into model theoretic terms. In 

concentrating on the structures themselves, one is hampered by the fact that a 

given countable structure always has continuum many isomorphic copies. One is 

therefore forced to consider theories rather than models. 

Stated as downward Lowenheim-Skolem theorems, and proved model theoret- 

ically, additional results become available to those insufficiently initiated into the 
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subtleties of recursion theory to appreciate a counterpart expressed in its terms. 

Furthermore, results expressed in terms of theories and their models are generally 

more useful to the model theorist, and tiresome coding processes can be avoided. 

On the other hand, we do not mean to criticize the recursion theoretic approach, 

nor to deny the added insight which may be available to those able to view results 

in such terms. However, such an approach is often unnecessary, and may prove 

impractical for those lacking the recursion theoretic background. 

It is assumed that the reader is familiar with the basic notions of infmitary 

logic and admissible sets. Any necessary background materical can be found in 

[,1], [,3], [,6], or [.9]. The admissible sets may be allowed to contain urelements 

as in [3], but unlike [,3], we assume that admissible sets contain co, that is, satisfy 

the axiom of infinity. In Section 2 we begin with an admissible set A and obtain 

another admissible set B _~ A; we may assume that B contains no additional 

urelements. As the use of urelements will not affect the presentation of the material 

to follow, we omit any further allusions. 

Though the reader is most likely already aware of the completeness theorem for 

.~,~,~,, we mention it explicity. There is a complete notion of provability t- for 

.L~e,~,,~. That is, if T is a countable theory in La~,l~, and ~b is a sentence of L a , , ,  then 

T t-~b iff T ~ q~. Specifically, we need to know: 

(*) If A is admissible, ~b ~ Laa, and T is a theory in L~',l, E-definable on A, then 

the relation T l-~b is E-definable on A. 

lo 

We assume the reader is familiar with the basic material on consistency 

properties as presented in [6]. We fix a language ~ and a countably infinite set C 

of constant symbols disjoint from the set of symbols of -~. We will always assume 

that .~ and C are elements of any admissible set A under consideration. We 

denote by .~'  the language obtained from .~r by adjoining the additional constant 

symbols in C. If we choose C _c co, then if .~r is a fragment of -~o,o, ~ will be a 

fragment of -L#~o,o. Let T be a consistent theory in .~B. We denote by 5:(L~'z, T) 

the set of all finite sets s of sentences of ~ such that the sentences of s contain 

only finitely many distinct constants of C, and such that not T ~" "-1 /k s. 

Of basic importance to the study of .LPo0~ is the following well-known lemma. 

LEMMA 1. I f  -~n is a countable fragment and T is a consistent theory in .~n, 

then 5P(.~E'B, T) is a consistency property. 
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Lemma 1 is combined with the so-called model existence theorem to obtain the 

completeness theorem for Lao,,, 0. We will state a more effective version of the model 

existence theorem in the extended version. A set Se will be a consistency property 

in the sense of an admissible set A provided that 6 a is a consistency property, 

6 a ~ A, each s ~ SP is countable in the sense of A, and each sentence ~b ~ W Se is a 

sentence of La,~,o, in the sense of A; that is, each conjunction and disjunction in tk 

is over a set of formulas countable in the sense of A. In particular, if 6 a ~ A is a 

consistency property and there is some LaBiA, a countable fragment in the 

sense of A, such that each s ~ S is a subset of LaB, then S is a consistency property 

in the sense of A. In this paper, consistency properties will always consist of finite 

sets of sentences. We can now state 

LEMMA 2. Suppose A is admissible and 5e is a consistency property m the 

sense of A. Further suppose that T is a set of sentences, countable in the sense of 

A, such that for each s ~ Sr and qb e T, s k3 {~b} e S~. Then, for each s ~ 6 a, s U T 

has a model in A. 

The proof of this form of the model existence theorem involves nothing beyond 

noting that the usual proof proceeds sufficiently effectively. 

Now, if LaB is a countable fragment of La , in the sense of the countable 

admissible set A, and T is a consistent theory in La B which is E-definable on A, 

then, in view of (*), Se(LaB, T) ~ A +, the smallest admissible set with A as an element. 

Combining this last fact with Lemmas 1 and 2 above we have the following 

result which was already implicit in 18]. 

THEOREM 1. Let Laa be a countable fragment of Laooo, in the sense of the 

admissible set A, and let T be a consistent theory in Lae, Y.-definable on A. 

Then T has a model in A +. 

We observe the following variant of Theorem 1 : If A is countable in A +, and T 

is a consistent theory in La,t, E-definable on A, then Thas a model in A +. 

We noted in [8] that one cannot improve Theorem 1 by changing A + to A. In 

fact, if A is not recursively inaccessible, a counterexample always exists. However, 

i f  we consider the special case in which T is a complete theory we can replace A + 

with A. A complete theory for LaB is, of course, a consistent theory T such that 

for each ~b s LaB, either T }- ff or T ~- --1 tk.Then, for T E on A and any tk ~ LaB, the 

relation T ~- ~b is A on A, since we have T 1- ~b iff not T I- --1 ~b. We note that in 

this case, if T* = {~b e LaB: T }-qb}, T* is equivalent to T and T* ~ A. Hence we 

may limit our consideration to complete theories T s A. Furthermore, even for 
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~b E SE~ the relation T F ~b is A on A, since T }- ~b iff T ~- ~ where ~ is the sentence 

of SEB obtained from q~ by replacing distinct constants of C appearing in ~b by 

distinct variables not appearing in ~b, and universally quantifying over these new 

variables. This last procedure is legitimate since sentences of SE~ contain only 

finitely many constants, and is effective. 

As a consequence of the above we have .~(sen, T) E A, and can now immediately 

obtain the following theorem. 

THEOREM 2. Let Sen be a countable fragment in the sense of the admissible 

set A, and let TEA be a complete theory in Sen. Then T has a model in A. 

In particular we obtain 

COROLLARY. Let Sen be a countable fragment in the sense of the countable 

admissible set A, and let T e A  be a theory insen. I f  T is co-categorical, then T 

has a model in A. 

We observe that a A-definable theory on a locally countable admissible set A 

need not have a model in A, even if the theory is complete forse a. 

We will need the following special case of the omitting types theorem in the 

effective version. 

THEOREM 3. Let Sen be a countable fragment in the sense of the admissible 

set A, and let TEA be a complete theory in Sen. Suppose �9 E A is a function 

with domain co, such that for each n E 09, ~(n) is a set of formulas of S~' n with 

at most the variables Xo, ...,x~, occurring free. If, for each ~ ESE n consistent 

with T, with free variables among xo,...,xi~, there is a dpE~(n) such that 

T t.) {~k, r~} is consistent, then the theory 

TO {(Vxo) ... (Vx,~) V (I)(n): n E co} 

has a model in A. 

The proof of Theorem 3 can be taken from the standard proof of the omitting 

types theorem in [61, with the additional considerations as in the proof of 

Theorem 2 above. 

We assume the reader is familiar with the notion of a prime model. The necessary 

information is available in [6, Chapter 12]. 

THEOREM 4. Let Sen be a countable fragment in the sense of the admissible 

set A, and let TEA be a complete theory in Se n. I f  T has a prime model, then 

there is a prime model of T in A. 
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PROOF. A countable model ~Yt of T will be a prime model for T provided that 

each n-tuple of elements of the model satisfies a formula of LaB complete with 

respect to T for formulas of ken. Let Kn be the set of formulas of keB with free 

variables among Xo,'", x,_ 1, complete with respect to T for formulas of keB. It is 

straightforward to verify (see [9, Sect. 5]) that the function K with domain to, 

such that K(n) = K, is in A. Now, we take �9 = K in Theorem 3 above. Since we 

assume T has a prime model, the hypothesis of Theorem 3 is satisfied, and so T 

has a model in A, every n-tuple of whose elements satisfies a formula of keB 

complete for s B with respect to T. Since this model is countable, it is a prime 

model for T. �9 

It is known (see [6]) that if a complete theory T in the countable fragment 

keB admits only countably many types over keB, then T has a prime model. In 

particular, if T has fewer than 2 ~~ non-isomorphic countable models, then 

T admits only countably many types over keB, and so T has a prime model in A. 

We can obtain a stronger result in this direction, but without mention of prime 

models, using Lemma 3 below. 

Given a consistent theory T in a fragment keB, by a completion of T in keB we 

mean a consistent theory T' =_ T in keB, complete for keB in the strong sense that 

for each tk e keB, either ff ~ T' or --1 ~b ~ T'. If T is complete for keB, T will have a 

unique completion in ke~. When only one fragment keB is involved, we omit 

mentioning the fragment each time. 

LEMMA 3. Let A be a countable admissible set, and ken ~ A a fragment. I f  

a consistent theory T in keB, Y-definable on A, has fewer than 2~~ - 

pletions, then every completion of T is in A. 

A direct proof of the above follows from [3, Chap. III, Sect. 8]. Restating the 

result there in the form we need, we have that if some consistent theory T' on ke,t 

has fewer than 2 t~~ completions on keB, then T' U {~b} is complete for ken for 

some ~ ~ke.4. Now let 

T' = T U ( - 1 / ~  T*: T * ~ A  &(V~bekeB) [ ~ e  T*~-~-7 ~ T*]}. 

If some completion of T on ke n is not in A, then T' is consistent. But T' has fewer 

than 2 ~~ completions on keB, so for some q~ ~ keA, T' u {~b} is complete for La B. 

Now, we note that T ' u  {~} is Y-definable on A since T is. Hence {~k ~ keB: 

T ' u  {~b} t-~,} is in A, and is a completion of T on ken. Then of course, 

"-1 A{~k~keB: T' u{~b} I-~}~T' ,  whence T' U{~b} is inconsistent, a con- 
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tradiction. We now see that each completion of T on LP n is of the form 

{r T* t-~}, for some T * 6 A ,  and so, is in A. 

Alternatively, Lemma 3 is seen to follow from the more classical result that if a 

E~ subset S of reals has cardinality less than the continuum, S is a set of 

hyperarithmetic reals. In [3], an extended form of Lemma 3 is used to obtain 

this last result. Further generalizations of Lemma 3 are given in [3]. One gene- 

ralization is to the case in which one considers La a itself rather than some .ga n ~ A. 

Though this result provides a theory A-definable on A, one cannot, in general, 

obtain a model in A from the theory. Another generalization in which one considers 

two languages will be mentioned later in this section. 

Combining Lemma 3 with Theorem 2 we easily obtain 

THEOREM 5. Let ZP n be a countable fragment in the sense of the countable 

admissible set A, and suppose T is a consistent theory in .oq" B which is E-definable 

on A, and has fewer than 2 t% completions. Then T has a model in A. In fact, 

every model of T has the same .o~ B theory as some model in A. 

Continuing in this direction we obtain a result whose hypothesis is weaker 

than that of Theorem 5. We assume the reader is familiar with the notion of the 

canonical Scott sentence of a model. We denote the canonical Scott sentence of a 

model ~IR by css (~0~). Basic information on css (~IR) is available in [9]. It is easy to 

verify that if Aaa is a fragment in A, and T~ A is a complete theory in AeB, and 

9J~ E A is a prime model for T, then css (~IR) ~ A. We note that if A is an admissible 

set, and T~ A is a theory in ~,~, then the class of all canonical Scott sentences in 

A of models of T in A is E-definable on A. We denote this class by F r. Fr  may be 

empty, either because T has no models in A, or because no model of T in A has its 

canonical Scott sentence in .oq' a. 

We now state the aforementioned result for the case in which A is locally 

countable. In this case, if 932 ~ T, css (~IR)~ A iff css (~02)e Ft.  We comment on 

the general case thereafter. 

THEOREM 6. Let .oq'~ be a fragment in the: locally countable admissible set A 

and let T s  A be a consistent theory in Z/'n which has fewer than 2 ~~ countable 

models up to isomorphism. Then either 

(i) F r ~ A and the canonical Scott sentence of each model of T is in Fr, or 

(ii) Fr  ~ A, F r is infinite, and there is a model of T whose canonical Scott 

sentence is not in F r. 
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PROOF. Suppose (i) fails. Then either F~. ~ A, or FT-~ A and there is a model 

of T such that css (gJl)~ Ft. 

In the first case we consider the theory S = T U  ( ~ :  tr~F~). Since both T 

and FT are Z-definable on ,4, S is also ~-definable on A. Furthermore, S ~ A, or 

else, since T~ A, F~ = S \ T would be an element of A by A-separation. One can 

now apply the Barwise compactness theorem to S, obtaining a model ~J~ of T 

with css (~IR) ~ Ft. 

In the second case, our assumption implies that S has a model. Since Te A 

and Fr e A, there is a fragment ~B, �9 A such that S is a theory in LPB,. Since Thas 

fewer than 2 s~ countable models up to isomorphism, so does S. Finally, since A is 

locally countable, s is a countable fragment in the sense of A, and so, by our 

earlier observations, there is a prime model ~ for S in A. As we noted above, 

css (gR)�9 A. Then, of course, css (~0/)�9 Fr, which is impossible. We conclude 

therefore that Fr ~ A, and we are back to the first case. 

Since A is closed under finite subsets, it is obvious that if Fr ~ A, then Fr is 

infinite. �9 

If A is not locally countable, then Fr may be in A, but uncountable in the sense 

of A. In this case our proof would not yield the conclusion that the canonical 

Scott sentence of each model of T is in Ft. 

If T were assumed to be only E-definable on A, then Fr need not be E-definable 

on A, and the Barwise compactness theorem could not be applied to S. However, 

one can still show that every model of T has a Scott sentence in Fr, or that, at 

least, Fr is infinite. 

In this case, we first consider the ~ n  completions of T, which are all in A by 

Theorem 5. Now, by observations made above, each completion has a prime 

model in A, with its canonical Scott sentence in A. If  there are infinitely many 

completions, we are done, as well as if every countable model of T is isomorphic 

to one of these prime models. Otherwise, we consider the theory T1 ~ A obtained 

from T by adjoining the negations of these finitely many canonical Scott sentences. 

TI is again a consistent theory in some fragment ~B, countable in the sense of A, 

with fewer than 2 s~ non-isomorphic models, and we may proceed as before. 

Iterating this process, if there are only finitely many non-isomorphic countable 

models of T, a copy of each, along with the canonical Scott sentence will be 

obtained in A. Otherwise, infinitely many non-isomorphic models of T and their 

canonical Scott sentences will be generated in A. 



60 M. NADEL Israel J. Math., 

Lemma 3, and hence Theorems 5 and 6 also hold in more general pseudo- 

elementary versions. For brevity, we state the pseudo-elementary version of 

Theorem 5 explicitly and omit the others. 

THEOREM 5'. Suppose .oq'B is a countable fragment in the sense of the count- 

able admissible set A, o,~rD is a fraflment in A, and LaB c ~ o .  Let T be a theory 

in o,'ff D such that there are fewer than 2 t~~ completions in La consistent with T. 

Then every model of T has the same LaB theory as some model in A. 

One might wonder if, as long as we assume that A is countable, and so LaB e A 

is also countable, we might be able to drop the assumption that La B is countable 

in A, in some or all of the results above. However, this cannot be done for any of 

the above results, since one can find an example of a countable admissible A and a 

sentence ~b ~ LaA which is co-categorical and has no model in A. In fact, A can be 

taken to be recursively inaccessible. We briefly indicate below how such an 

example might be found. 

In [4] Gregory adapts an example of Malitz 17] to obtain a sentence ~b of 

Laooo, which is syntactically complete for Laoo,~ (with the proof system analogous 

to the usual system for Lao,,~,), but which has no model. If we let A be a countable 

transitive model of ZF or of that finite part of ZF necessary to carry out Gregory's 

argument, there will be a sentence q~ ~ Laa which is co-categorical, but has no 

model in A itself. The fact that q~ is co-categorical follows from the actual meaning 

of q~, which we do not discuss here (see [7]). 

2. 

Just as Theorems 5 and 6 were motivated by a more classical result of recursion 

theory, so was the principal result of this section. Our starting point in this case 

was the so-called Kleene-Gandy Basis Theorem, which states that every non- 

empty g~ set of reals contains a real of strictly lower hyperdegree then Kleene's 0. 

While the object in Theorems 5 and 6 was to consider theories with few non- 

isomorphic countable models, the idea here is to look for models in fattenings o 

A. Though any result in this direction will have a weaker conclusion than any of 

our previous results, with the possible exception of Theorem 1, we will also be 

able to manage with an extremely weak hypothesis. 

In recent years, a number of results have been obtained which may be regarded 

as concerning fattenings. One may view results dealing with admissible ordinals, 

rather than admissible sets, in terms of fattenings. We shall mention some of these 
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below as corollaries. We now mention a very general result in this direction, 

which though no more difficult to prove than certain known results, appears to 

have been overlooked. This result will allow us to view several specialized results, 

whose relationship might appear somewhat remote, as instances of a single 

Lowenheim-Skolem phenomenon in infinitary logic. 

THEOREM 7. Suppose A is a countable admissible set and T is a consistent 

theory of .W a, Z-definable on A. Then, there is an admissible set B D_ A, having 

the same ordinals as A, which contains a model of T. 

Using results of [9] we obtain 

COROLLARY 1. Suppose A is a countable admissible set and T is a consistent 

theory of -~ a, Z-definable on A. Then T has a model whose canonical Scott 

sentence has quantifier rank at most ct+r where ~ is the least ordinal not in A. 

Our original proof of Theorem 7 involved an application of the Kleene-Gandy 

Basis Theorem, which, in turn, can easily be proved from Theorem 7. Subsequently 

we noticed that a proof very similar to that of [2, (6.1)] could be used. Rather 

than using .~ directly, we consider a theory T'  in the language of set theory 

augmented by a constant symbol a for each element a of A, and an additional 

constant symbol ~l~. As part of T', we include ~R ~ q~ for each q5 ~ T. This is possible 

since .s e A, and T is Z-definable on A. Furthermore, we demand that the universe 

of ~ is co so that the interpretation of ~ will be included in the standard part of 

the model of KP produced. The absoluteness of the notions involved presents no 

difficulty. We leave the exact details of the proof to the reader. This proof involves 

both the Omitting Types Theorem and the Barwise Compactness Theorem. 

Weaker version of Theorem 7 can be obtained from the Barwise Compactness 

Theorem alone. For example this is true if one cons'ders only a single sentence of 

.W~ or even a Z-definable theory whose sentences are bounded in rank in A, or if 

one assumes that A is a successor admissible. The reader may be familiar with 

the omitting types proof of Grilliot and Simpson for [6, Th. 15]. Their proof can 

easily be adapted to cover the cases where A is of the form L~(a), or where 

Lo(A~(a) is projectible for some a ~ A. However, while some knowledge of the 

recursion theoretic aspects of admissible sets is required for that proof, none is 

required in the proof in [2]. 

COROLLARY 2. (Sacks [10]). For each countable admissible ordinal o~ there 

is a set x ~_ co such that r = ct. 
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PROOf. We may begin with the admissible set A = L~. For .W we choose the 

language of set theory with an additional constant c. By a X recursion in A, one 

can easily define for each ordinal fl E A a formula Sa(x) which characterizes the 

order type of ft. For the X-definable theory T we take a collection of sentences of 

La a expressing the following: 

(i) axioms of KP, 

(ii) co_to 

(iii) (3x)dpa(x) and x is recursive in c for each ordinal fl E A. 

By Theorem 7 we find a model ~ of T in an admissible set B with ordinal ct. 

Let A* be the standard part of ~0~. A* is easily seen to have ordinal a, and if x is 

the interpretation of c in ~02, then x is in A*, and hence ~o~ < a. On the other hand, 

to~ > ~ because of (iii). II 

In the above, the general model theory has been taken care of in Theorem 7, 

and the proof need only touch on the specific considerations involved, for example, 

the absoluteness of the relations employed. 

We leave the easy proof of the next application to the reader. 

COROLLARY 3. (Friedman.) Let A be a countable admissible set and let T be a 

theory of .W a extending KP, which is X-definable on A. I f  T has a model which 

is an end extension of A, then T has a model which is an end extension of A and 

whose standard ordinals are just the ordinals of A. 

The following is merely a special case of Corollary 3, but is often more useful 

in practice. A theory T extending KP is said to have the truncation property iff 

the standard part of every model of T is a model of T. We have already implicitly 

used the fact that KP itself has the truncation property in the proof of Corollary 2, 

and in the proof of Theorem 7 itself. 

COROLLARY 4. Let A be a countable admissible set and let T be a theory in .2",t 

extending KP, which has the truncation property and which is X-definable on A 

I f  A has an end extension satisfying T, then there is an admissible set B D_ A~ 

with the same ordinals as A, which is the universe of a model of T. 

As simple applications of Corollary 4, given a countable admissible set A, we 

may find an extension of A to an admissible set with the same ordinals in which 

every set is countable, or in which the power set axiom holds, or in which every 

ordinal is countable, but not every set. An important drawback regarding the use 

of Corollary 4 is that ZF does not have the truncation property. Nonetheless, 
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Corollary 4 is still very strong. In particular, Theorem 7 itself could have been 

derived from it in a fairly direct way. Our reason for listing one result as theorem 

and the other as corollary is simply a matter of our feeling as to which statement 

appears more general. 

As a final corollary to Theorem 7 we state a strengthening which follows easily 

by a familiar trick. This result, which we will state as Corollary 5 below, may be 

regarded as a generalization, in the language of  admissible sets, of the Kleene- 

Gandy Basis Theorem. 

For the purposes of the discussion to follow we fix two alphabets .Z, .Z'  ~ A, 

with .Y _ .Z'. Following [3], we say that ~b is a Y,~ formula of ~.4 iff there is a 

formula ~b of .~e,~ such that ~b is of  the form (3 Q)$, where Q ~ A is a set of symbols 

of  .W' \ .W. Given a X~ formula of  .fia a, ~b = (3Q)~,, we denote by tk* the formula 

We fix a particular symbol B of  .W' \.W. We say that a E~-formula ~b = (3 Q)$ 

of s is an R-formula iff the only symbol of La' \ La occurring in $ but not in Q 

is B. For simplicity we restrict our discussion to R-sentences, which are simply 

R-formulas (3 Q)$ in which ~ is a sentence of La~. We leave it to the reader to 

extend the discussion to arbitrary Xl-formulas of -~e a. By an R-theory we simply 

mean a set of R-sentences. 

If  T is an R-theory, and ~!~ is a structure for .L#, we say that R satisfies T in 9X 

iff there is an expansion of ~ to a structure ~OI' for ~ ' ,  in which B is interpreted 

by R, and such that ~I~' V qb* for each ~b ~ T. 

The result we are about to state concerning _R-theories is perhaps most in- 

teresting when we begin with a fixed structure as well as an R-theory. 

COROLLARY 5. Let A be a countable admissible set, .W, .s alphabets, 

with .oq" ~_ .o~, and _R ~ .o~' \ .~ .  Let ~I~ ~ A be a structure for .~. Let T be an R- 

theory, E-definable over A, such that some R satisfies T in ~t'~. Then, there is an 

admissible set B ~_ A with the same ordinals as A, and an R EB, such that R 

satisfies T in 9J~. 

PROOF. We will work in an alphabet La*s A which is obtained from La' by 

adding a new constant symbol era, for each m ~ M. We consider the following 

theory T* of  L a* which is easily seen to be Y-definable on A: 

(i) atomic diagram of ~ff~, 

(ii) (Vx) V x  = cm, 
m ~ M  

(iii) $* for each $ E T. 
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By our hypothesis on T, T* has a model. By Theorem 7, here is an admissible 

set B _ A with the same ordinals as A, and a model ~IR* of T* in B. Clearly, ~0/* 

is isomorphic in B to a model 92, in which the interpretation of each cm is m 

itself. Now, we need merely choose R to be the interpretation of _R in 9~. �9 

The reader will have probably already noticed that the notion of pseudo- 

elementary class as used in Section 1 and that of Y.~ theory are really equivalent. 

Our choice of nomenclature was influenced by common usage. 

More sophisticated recursion theoretic results in this direction may be obtained. 

We recommend that the reader consult 15]. 
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